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Abstract: Seedlings are an important stage for plant populations, as the abundance and rigor of
seedlings can indicate a changing forest structure in the future. Studying the different traits of the
seedling can represent how the plant grows. Biomass is one of the traits that can represent the plant’s
performance and many other growth processes of the seedling. Several allometric equations have
been developed to estimate tree biomass. However, allometric equations for the biomass of seedlings
remains poorly studied, especially those from the tropics. The objective of this research is to create
and develop a model that can be used to predict the biomass of seedlings, including total biomass,
aboveground biomass, and belowground biomass, from root collar diameter, shoot height, main stem
length, and wood density from 205 two-year-old seedlings from twenty tree species found in dry
evergreen forest in Huai Kha Khaeng Wildlife Sanctuary, Uthai Thani, Thailand. The results showed
that the root collar diameter, shoot height, and wood density could be used to create a model to best
predict the seedling biomass. This model should be tested with other seedlings in the wild and other
datasets to evaluate the performance of the model. To our knowledge, this study is among the first
to provide the first allometry for seedlings in tropical dry evergreen forest. The results from this
study will allow ecologists to monitor and examine the growth of the seedlings at all stages of life in
dynamic tropical environments in the future.

Keywords: carbon stocks; tropics; seedling traits; ecological modeling

1. Introduction

Today, the global climate is changing, and the continuous increase in atmospheric
carbon dioxide affects the global temperature and the environment in many areas. Plants
are very important organisms to help reduce the rate of change because plants effectively
absorb and store carbon from the atmosphere [1]. With photosynthesis, plants use atmo-
spheric carbon and light energy to create organic carbon to be stored in their biomasses.
Different life stages of plants have different capacities and rates of storing carbon. Sev-
eral environmental and plant factors determine the carbon sequestration capacity of each
plant species, such as water efficiency, growth rate, carbon absorption, and release rate [2].
Therefore, the study of plant biomass is important for ecological management as the global
environment changes. An important step in the study of biomass is to create equations that
show the relationships between plant traits. This can be used as a tool to assess the carbon
content in the form of biomass, such as roots stems, leaves, and branches [3].

Carbon from the air is fixed in the leaf area through photosynthesis. Plants’ ability
to fix and store carbon differs depending on the environment and the species of the
plant [4]. The study of plant biomass can be analyzed to show the amount of carbon
that plants accumulate in different parts in order to grow and survive. Plants are already
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helping to reduce the carbon in the atmosphere by fixing the carbon into mass. However,
plants also release carbon into the atmosphere, through the process of respiration [5].
When photosynthesis can produce more energy than the respiration process, the energy
is converted to structural carbohydrates in the form of biomass [6]. However, a direct
measurement of biomass requires destructive sampling, which means interfering with
the population dynamics and the rate of carbon sequestrations. Other indirect methods
for measuring biomasses have been developed, but one of the most regularly used and
practical methods involves the use of allometric relationships [7–15].

The allometric relationship is a relationship between plant functional traits that can
be described as indicative, or proportional to another trait. This is often calculated by
statistical methods in the form of the equation for the relation of both traits (allometric
equation) [2,16]. Many studies have looked for traits that are easier to measure or collect
and used to describe or predict some traits that are more difficult to measure or collect [17].
This relationship is used in forest ecology studies. Much research about using modeling
methods for estimating the biomass of the tree has been published [18], starting with the
determination of the correlation model of biomass, such as diameter or height, and then
creating an equation that can be used to find biomass. Using appropriate statistics to
calculate the equation depends on the type of forest, groups, categories, or species of plant
studied [11,19,20].

While many equations exist for tree biomass, studies on seedling biomass are relatively
rare. The seedling is the first stage of a tree after germinating from seed before reaching
a mature stage with a standing stem. Generally, seedlings refer to plants with a height
from the root collar diameter to the terminal bud level of less than 1.30 m [6]. Seedlings are
critical in determining the fate of the plant population structure, including its composition,
plant size, age, distribution pattern, and density [21]. The impact of seedlings on the
population is often measured in terms of abundance, occurrence, or amount [22–24], while
the ability to grow and accumulate biomass during this stage has rarely been studied.

This research aims to develop an allometric equation to predict seeding biomass from
the morphological traits, including root collar diameter, shoot height, main stem length,
and wood density of seedlings. The morphological traits of plant 20 species (Table 1) found
in the 50-hectare long-term forest dynamics plot located in Huai Kha Khaeng Wildlife
Sanctuary, Uthai Thani Province [25] (Figure 1) were used to fit candidate models to predict
total biomass, aboveground biomass, and belowground biomass, separately. The candidate
models were compared for their performance and errors, allowing for the selection of the
most optimal model for predicting biomass. The obtained allometric equation will allow
measurements of seedling biomass without disturbing the seedlings and can be used to
assess plant performance for forest restoration planning.

Table 1. Sample size and range of seedling measurements from the current study *.

Canopy Scientific Names Code N Di (mm) SL (cm) SH (cm) WD ** (g/cm3)

Top
canopy

Hopea odorata Roxb. HOPEOD 10 5.78–9.38 45.05–132.05 47.46–101.64 0.55–0.84
Toona ciliata M. Roem TOONCI 9 8.93–22.36 65.49–194.76 69.93–155.09 0.42–0.58

Chukrasia tabularis A. Juss. var. tabularis CHUKTA 10 9.42–15.13 101.10–150.30 107.85–162 0.63–0.74
Dipterocarpus alatus Roxb. DIPTAL 9 8.23–14.5 62.25–115.61 66.43–115.98 0.41–0.65

Sub
canopy

Mitrephora tomentosa Hook. f. and
Thomson MITRTO 10 5.41–13.47 29.21–86.25 24.38–90.26 0.50–0.76

Cleidion javanicum Blume CLEIJA 11 10.86–17.6 69.63–176.28 65.49–172.98 0.49–0.60
Garuga pinnata Roxb. GARUPI 10 12.05–21.03 116.49–212.08 112.64–205.95 0.39–0.47

Aphanamixis polycephala (Wall.) R. Parker APHAPO 15 6.85–17.44 22.98–99.61 29.93–104.23 0.50–0.58
Afzelia xylocarpa (Kurz) Craib AFZEXY 15 10.31–22.89 86.85–226.56 72.00–207.56 0.57–0.69

Mallotus nudiflorus (L.) Kulju and Welz MALLNU 10 13.72–21.43 66.91–182.45 66.72–180.80 0.37–0.50
Diplospora singularis Korth. DIPLSI 10 6.16–11.52 33.37–80.43 23.91–80.43 0.49–0.56

Monoon viride (Craib) B. Xue and R. M.
K. Saunders MONOVI 10 6.1–18.17 40.55–97.15 43.99–91.66 0.46–0.64

Casearia grewiifolia Vent. var. grewiifolia CASEGR 9 6.73–13.68 49.81–99.56 46.91–93.91 0.26–0.62
Garcinia celebica L. GARCCE 10 4.44–11.58 19.56–81.10 22.06–76.05 0.65–0.84
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Table 1. Cont.

Canopy Scientific Names Code N Di (mm) SL (cm) SH (cm) WD ** (g/cm3)

Understory

Croton hutchinsonianus Hosseus CROTHU 10 5.35–9.78 35.32–98.85 32.10–84.40 0.72–0.82
Polyalthia suberosa (Roxb.) Thwaites POLYSU 10 5.33–9.01 40.71–101.52 38.51–87.64 0.39–0.55

Alangium chinense (Lour.) Harms ALANCH 10 8.5–12.29 40.76–134.51 82.28–149.41 0.36–0.58
Antidesma montanum (Blume) P. Hoffm.

var. montanum ANTIMO 10 7.23–13.55 62.48–182.75 40.24–135.48 0.69–0.74

Alchornea rugosa (Lour.) Muell. Arg. ALCHRU 10 6.31–11.91 71.5–83.81 63.17–90.32 0.40–0.54
Hyptianthera stricta (Willd.) Wight and

Arn HYPTST 7 7.87–12.08 51.73–93.49 65.9–103.48 0.49–0.61

* N = number of seedlings measured, Di = root collar diameter, SL = shoot length, and SH = shoot height.
** WD = wood density data were collected from five seedling samples per each species.
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Figure 1. Location of the 50-hectare long-term forest dynamics plot in Huai Kha Khaeng Wildlife
Sanctuary, Uthai Thani Province, Thailand.

2. Materials and Methods
2.1. Study Area

Huai Kha Khaeng Wildlife Sanctuary (Coordinates: 15◦00′–15◦47′ N, 99◦00′–99◦27′ E)
a part of the Western Forest Complex of Thailand, covers approximately 3800 km2 and
is mostly in Uthai Thani Province. The average precipitation is 1357 mm/year, and the
average annual temperature is 23.5 ◦C. The area is a valley with a river flowing through the
middle, consisting of dry evergreen forest, mixed deciduous forest, deciduous dipterocarp
forest, and hill evergreen forest [25].
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2.2. Species Selection and Preparation of Seedlings

Seeds of the twenty common tree species were collected (Table 1) from at least three
mother trees surrounding the 50-ha long-term forest dynamics plot (Figure 1). Species
were selected to represent three groups of mature trees by the canopy layers: understory
(less than 10 m tall), sub-canopy (10–30 m tall), and top canopy (more than 30 m tall). This
strategy was to ensure that a wide range of species of different ecology was chosen for data
collection [25]. The exploratory data analyses showed no significant difference in seedling
biomass among the mature tree layer group.

All collected seeds were planted in the same planting material, which was a mixture
of soil, black husk, and manure at the ratio of 6:3:1. Seedlings were grown under the same
environment in the nurseries at Kasetsart University, Bangkok, Thailand in 2017–2019.
The average temperature during the time of planting was 29 ◦C, and the average light
intensity was 6379 lux. The seedlings were measured at the age of two years when they
had a diameter at breast height of less than 1 cm.

2.3. Seedling Measurements

Shoot height (SH) was measured from a side-view photo of a seedling with the
program Fiji [26], an extension of the ImageJ program (version 1.53q) [27]. SH was defined
as the height from the root collar to the highest point of the seedling in its natural orientation.
The root collar diameter (Di) measurements were taken twice, perpendicular to each other,
with vernier calipers, and the average value of the two measurements was used as the
diameter of the seedlings. The main stem length (SL) was measured from the root collar to
the tip along the stem with a measuring tape. The SL sometimes exceeded the SH as the
stem kept elongating but started to droop and did not go straight up further. The wood
density (WD) was measured using the water displacement method [18]. A piece of 2 cm
long stem at 1 cm above the root collar was cut from five seedlings for each species for the
measurement. The wood density was calculated from the dry weight proportional to the
volume of the wood, and the average of five values was used for each species (Table 1). The
biomass of seedlings was investigated by weighing separate parts of the seedling, including
leaves, stems, branches, and roots, after drying at 80 ◦C for 3–5 days, or until the specimens
were completely dry. Dry weight was measured in three different partitions: total biomass
(TBM, from the plant), aboveground biomass (AGB, from leaves, stem, and branches), and
belowground biomass (BGB, from root).

2.4. Statistical Analyses

Raw data were first transformed to a logarithmic scale to adjust for their distribution.
Linear mixed models were constructed, using biomasses as dependent variables, stem traits
(SH, Di, SL, and WD) as effects, and species of the seedling as a random effect. Specification
of species as a random effect allowed the better estimation of coefficients, less effect from
a small sample size in each species, and the ability to apply to other species beyond this
study. Candidate models were constructed based on the following equation for the cylinder
volume multiplied by its density (in this case, wood density is WD):

cylinder mass =

(
πDi2

4

)
×H×WD (1)

where H is the height of the cylinder, Di is the diameter of the cylinder, WD is the density
of the cylinder.

In this study, all of the candidate models set the root collar diameter as the main
variable, as it was chosen to be a single variable in previous allometric studies (e.g., [18]).
Additional independent variables (either SH or SL for H and WD) were also added to
each of the candidate models. Two main approaches were used in constructing candidate
models. First, each trait was specified as a separate predictor with its coefficient (β) to be
estimated. Second, similar to the equation for the cylinder mass, the chosen stem traits were
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first multiplied and then fit into the model as a single predictor with one coefficient to be
estimated. We also varied the use of the diameter as a regular term (Di) and a square term
(Di2) to mimic the formula for cylinder mass. The four main types of candidate models
were as followed:

ln(Yest) = α + β1ln(Di) + β2ln(X1) + β3ln(WD) (2)

ln(Yest) = α + β1ln(Di2) + β2ln(X1) + β3ln(WD) (3)

ln(Yest) = α + βln(Di·X1·WD) (4)

ln(Yest) = α + βln(Di2·X1·WD) (5)

where Yest is estimated biomass, Di is root collar diameter, X1 is either SL or SH, and WD is
wood density.

A total of 22 candidate models were constructed for each type of partition of biomass
including total, aboveground, and belowground (Table 2).

Table 2. Model effectiveness results reported in the value of AIC, RMSE (root mean square error), and
Avg%ER (average percent error) of all candidate models. The performances of models are reported
separately for total, aboveground, and belowground biomasses. The models in bold are the best
performing model for each type of biomass. Di = root collar diameter, SH = shoot height, SL = shoot
length, and WD = wood density.

Model
Total Biomass Aboveground Biomass Belowground Biomass

AIC RMSE Avg%ER AIC RMSE Avg%ER AIC RMSE Avg%ER

ln(Yest) = α + β1ln(Di) 76.447 0.236 5.493 93.561 0.250 6.651 194.466 0.309 7.672
ln(Yest) = α + β1ln(Di) + β2ln(SL) 37.674 0.210 4.866 35.679 0.211 5.462 193.727 0.305 8.332

ln(Yest) = α + β1ln(Di) + β2ln(SH) * 21.796 0.198 4.483 33.291 0.207 5.154 181.267 0.293 9.976
ln(Yest) = α + β1ln(Di) + β2ln(WD) 70.758 0.236 5.495 92.308 0.250 6.639 187.018 0.310 7.498
ln(Yest) = α + β1ln(Di) + β2ln(SL) +

β3ln(WD) 31.719 0.210 4.893 34.634 0.211 5.447 186.143 0.306 8.181

ln(Yest) = α + β1ln(Di) + β2ln(SH) +
β3ln(WD) ** 13.160 0.198 4.503 29.302 0.207 5.163 172.459 0.293 9.872

ln(Yest) = α + β1ln(Di2) 77.833 0.236 5.493 94.947 0.250 6.651 195.852 0.309 7.672
ln(Yest) = α + β1ln(Di2) + β2ln(SL) 39.060 0.210 4.866 37.066 0.211 5.462 195.113 0.305 8.332
ln(Yest) = α + β1ln(Di2) + β2ln(SH) 23.182 0.198 4.483 34.677 0.207 5.154 182.654 0.293 9.976
ln(Yest) = α + β1ln(Di2) + β2ln(WD) 72.144 0.236 5.495 93.694 0.250 6.639 188.404 0.310 7.498
ln(Yest) = α + β1ln(Di2) + β2ln(SL) +

β3ln(WD) 33.105 0.210 4.893 36.020 0.211 5.447 187.529 0.306 8.181

ln(Yest) = α + β1ln(Di2) + β2ln(SH) +
β3ln(WD) 14.546 0.198 4.503 30.688 0.207 5.163 173.846 0.293 9.872

ln(Yest) = α + βln(Di·SL) 83.520 0.240 5.848 66.359 0.230 6.174 242.882 0.353 12.198
ln(Yest) = α + βln(Di·SH) 54.602 0.217 5.153 57.000 0.221 5.717 210.839 0.318 14.006
ln(Yest) = α + βln(Di·WD) 78.226 0.236 5.460 104.380 0.249 6.627 186.832 0.310 7.422

ln(Yest) = α + βln(Di·SL·WD) 78.416 0.240 5.858 66.491 0.230 6.160 237.086 0.353 12.165
ln(Yest) = α + βln(Di·SH·WD) 44.716 0.218 5.165 50.925 0.221 5.731 203.431 0.319 14.042

ln(Yest) = α + βln(Di2·SL) 43.352 0.215 5.065 34.748 0.212 5.518 212.130 0.324 10.436
ln(Yest) = α + βln(Di2·SH) * 21.184 0.199 4.534 30.862 0.207 5.166 186.068 0.298 11.707
ln(Yest) = α + βln(Di2·WD) 69.748 0.236 5.502 92.969 0.250 6.641 188.038 0.310 7.573

ln(Yest) = α + βln(Di2·SL·WD) 36.319 0.216 5.099 31.756 0.212 5.509 206.727 0.324 10.438
ln(Yest) = α + β1ln(Di2·SH·WD) ** 12.574 0.199 4.552 24.751 0.207 5.188 180.144 0.298 11.716

* The alternative models. ** The best fit models.

2.5. Models Comparison

The candidate models were compared using the Akaike information criterion (AIC),
the root means square error (RMSE), and the relative error (%ER) to determine the effective-
ness of the model. The AIC is a measure of the goodness-of-fit that penalizes parameter-rich
models, as required by the principle of parsimony, using the following formula:

AIC = −2ln(L) + 2p (6)
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where L is the likelihood of the fitted model, and p is the number of parameters in the
fitted model.

The model with a lower value of AIC indicates a better performance. RMSE and %ER
directly compared the observed values with the predicted values from the model, using the
following formulae:

RMSE =

√
∑n

i=1(Yobs − Yest)
2

n
(7)

%ER =

{
Yobs − Yest

Yobs

}
× 100 (8)

Average%ER =
∑n

i=1|RE%|
n

(9)

where Yobs is the observed values, Yest is the predicted values, and n is the total number
of observations.

All of the analyses were performed using R Version 4.1.2 [28] on RStudio version
2021.09.1 [29].

3. Results
3.1. Comparisons of Candidate Models

A total of 22 candidate models to predict the total, aboveground, and belowground
biomass of seedlings were constructed using root collar diameter (Di), shoot height (SH),
main stem length (SL), and wood density (WD). To compare the performances of the
candidate models, the values of the Akaike information criterion (AIC), root mean square
error (RMSE), and average relative error (Avg%ER) were calculated and reported for each
model and each type of biomass (Table 2).

3.2. Model Selection

The best-fit models were the ones with the lowest AIC, RMSE, and %AvgER for each
type of biomass. The results showed that the best model for each type of biomass was
different. For total biomass (TBM) and aboveground biomass (AGB), the terms Di2, SH,
and WD together were chosen to be the best predictor for modeling. However, for the
belowground biomass (BGB), using Di, SH, and WD as separate terms yielded better
predictions (Table 2).

The best-fit model in this study:
Total biomass (Figure 2a)

TMBest = e−2.852+0.734·ln (Di2·SH·WD)

= 0.058·
(

Di2·SH·WD
)0.734

Aboveground biomass (Figure 2b)

AGBest = e−3.241+0.739·ln (Di2·SH·WD)

= 0.039·
(

Di2·SH·WD
)0.739

Belowground biomass (Figure 2c)

BGBest = e−3.291+1.834·ln(Di)+0.482·ln(SH)+1.858·ln(WD)

= 0.037·Di1.834·SH0.482·WD1.858
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Figure 2. Goodness-of-fit for the chosen models by plotting the predicted model against observed
values of total (a), aboveground (b), and belowground (c) biomasses, where the black line represents
the expectation of predicted values being equal to the observed values. Individual percent errors
calculated using observed values of total (d) aboveground (e) and belowground (f) biomasses. The
red dashed line represents the error at zero percent, while the solid blue line and the grey bar represent
a spline (LOESS) regression of the data points and associated 95% confidence interval.

The predicted values from the best models were plotted against the observed values
and used to calculate the relative error for individual observation (Figure 2). The results
showed the average errors ranged between 4.5% and 9.8%. The model for the below-
ground biomass had the highest error, as the model overestimated at the lower values and
underestimated at the high values of biomasses (Figure 2f)

As wood density (WD) is not always available for seedlings, the following alternative
models without wood density were also chosen (Table 2).

The alternative model:
Total biomass

TMBest = e−3.283+0.735·ln (Di2·SH)

= 0.038·
(

Di2·SH
)0.735

Aboveground biomass

AGBest = e−3.662+0.739·ln (Di2·SH)

= 0.026·
(

Di2·SH
)0.739
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Belowground biomass

BGBest = e−4.314+1.835·ln(Di)+0.471·ln(SH)

= 0.013·Di1.835·SH0.471

where TBMest is the estimated total biomass, AGBest is the estimated aboveground biomass,
BGBest is the estimated belowground biomass, SH is a shoot height, Di is a root collar
diameter, and WD is a wood density.

4. Discussion
4.1. Comparisons of Candidate Models and Best Fit Model

The best model to predicts biomass used three stem variables: Di, SH, and WD. These
variables are effective at predicting seedling biomass, as they are directly proportional to the
biomass accumulated in the seedling stems. The best models included these three variables
as the composite variable (Di2·SH·WD) with one coefficient, similar to the equation for the
cylinder mass, suggesting that the use of cylinder mass equation as a candidate model was
reasonable for seedling biomass.

To obtain the best estimates of the seedling biomass, it is necessary to use the WD
variable, which requires a destructive sampling of the seedlings. Therefore, alternative
models with similar performances without WD were also proposed as alternative models.
These models with only Di and SH gave slightly higher AIC values, but almost identical in
their RMSE and Avg%ER values, when compared to the best model with all three variables
(Table 2). These slight difference between the best and alternative models suggested
that wood density can be omitted in a larger scale study without the resource to measure
seedlings wood density. Moreover, our analysis from this study showed that few differences
were detected among species. Hence, the use of species as a random effect was reasonable
in our study.

4.2. Errors of Models

The models for total and aboveground biomasses performed relatively well, with an
average error rate of 4.5–5.18 percent, compared to the belowground biomass which had
an average error rate of 9.8 percent (Figure 2). Measuring belowground biomass in the
natural environment is challenging, especially for seedlings [30]. In our study, it was further
complicated by the limited size of the pots in which the seedlings were grown, potentially
affecting its proportions to other stem traits. The error rates were more pronounced at
the low and high ends of the biomass spectrum, potentially due to a lower sample size at
these ranges and/or the stunted or accelerated growth of some seedlings in response to the
growing conditions. However, for normal-sized seedlings, the estimated biomass values
produced by our models should be relatively accurate.

4.3. Comparisons with Previously Published Equations

Most of the previous biomass equations were generated for aboveground biomass of
trees, where only diameter at breast height (DBH) can be measured reliably [12,18]. When
available, tree heights (SH) and wood density (WD) were also included in the biomass
equations, similar to our study with seedlings. When we compared the resulting equations
for aboveground biomass to the other studies, our equation was the most similar to the
equations for tropical trees [11] and rubberwood trees in plantation [10]. In both equations,
the exponents of diameter were around 2 (1.97–2.05) and those of height and wood density
were approximately 0.45 to 0.63. Another study estimated the aboveground biomass in
tropical lowland Dipterocarp forests using only the diameter and found the exponent for
the diameter at 2.1 [12]. Much less study was conducted for the biomass of seedlings. In
the study of Jatropha curcas seedlings under different levels of drought stress [31], only the
diameter was used in the equation with the exponent of 2.23. Despite using different sets
of variables, most of the exponents and coefficients of the previous equations are similar in
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magnitude to our equation for aboveground biomass. The differences in these constants can
be attributed to variations in geographical scopes, studied species, and planting conditions
(Table 3).

Table 3. Compared allometric models for predicting biomass with other studies *.

Biomass
Reference

Seedlings
(This Study)

Seedlings
Acten et al. [31]

Trees
Chave et al. [11]

Trees
Yang et al. [10]

Trees
Busaki et al. [12]

Total 0.058·(Di2·SH·WD)0.734 - - - -
Aboveground 0.039·(Di2·SH·WD)0.739 0.029·D2.33 0.067·(WD·DBH2·SH)0.976 0.132·DBH2.048·SH0.447·WD0.635 0.301·DBH2.196

Belowground 0.037·Di1.834·SH0.482·WD1.858 - - 0.205·DBH1.668 -

* Di is root collar diameter, SH is shoot height, SL is main stem length, WD is wood density, D is the diameter at
the base or at breast height, and DBH is the diameter at breast height.

4.4. Potentials for Future Studies and Application in Restoration

In the current study, wood density data were important for a more precise prediction.
However, these data were collected at the species level. While it would be ideal to have
wood density for individual seedlings for biomass predictions, a destructive sampling of
all seedlings is not feasible. A study on intraspecific variation of wood density among
the studied species could be conducted to determine whether using species-level data for
wood density is suitable. A previous study on tropical montane tree species found that the
intraspecific variation of wood density was relatively low and should be able to represent
the species as a whole [32].

Increasing the number of small and large seedling samples can also improve the model
performance, as the errors were the highest at the end of biomass spectrum (Figure 2).
Including smaller and larger seedlings will require a larger set of species and/or different
stages of seedling growths, which were not set up for the current study [18,20,33]. Moreover,
the belowground biomass from the pot-grown seedlings might be underestimated due
to the space limitation. Planting seedlings in a natural soil can potentially yield a more
accurate measurement of the belowground biomass.

Other methods are also available for biomass estimation [34]. Our current statistical
method had an advantage in its simplicity and ease for applying with the seedling measure-
ment. The additive biomass equation has a particular advantage in enhancing consistency
when adding up multiple components of biomass, such as stem, bark, and leaf [35]. In the
case of seedlings, we did not experience problems with additivity, probably because the
leaf and bark components were relatively minor compared to the stem. Therefore, we chose
the traditional allometric approach for our seedling data.

Along with the growth rate and functional trait data, biomass allometric equations
make it possible to choose the tree species that are appropriate for different stages for
restoration. Choosing tree seedlings that are fit to different successional stages will allow
higher survival rate and can restore the forest more successfully [36]. After planting, we
can use the seedling sizes to estimate how much carbon the forests store at different ages
for planning for sustainable restoration and/or timber harvesting in the future.

5. Conclusions

In conclusion, this study aimed to develop a model to predict the biomass of seedlings
in a dry evergreen forest in Huai Kha Khaeng Wildlife Sanctuary, Thailand. The results
of the study showed that root collar diameter, shoot height, and wood density could be
used to create a model that best predicted seedling biomass. The model with only shoot
height and root collar diameter could also be an alternative when the wood density data is
not available.

Our study provides a tool for researchers to measure and monitor seedling biomass
without destructive sampling. Future studies on seedlings and their biomass can help
predict future forest structure and growth patterns. This provides a foundation for potential
applications in ecological monitoring and conservation efforts in tropical forests.
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